Locomotion of microspheres for super-resolution imaging
نویسندگان
چکیده
Super-resolution virtual imaging by micron sized transparent beads (microspheres) was recently demonstrated by Wang et al. Practical applications in microscopy require control over the positioning of the microspheres. Here we present a method of positioning and controllable movement of a microsphere by using a fine glass micropipette. This allows sub-diffraction imaging at arbitrary points in three dimensions, as well as the ability to track moving objects. The results are relevant to a broad scope of applications, including sample inspection, microfabrication, and bio-imaging.
منابع مشابه
Synthesis and super-resolution imaging performance of a refractive-index-controllable microsphere superlens
Microspheres can function as optical superlenses for nanoscale super-resolution imaging. The imaging performance is mainly affected by the size and refractive index of the microsphere. Precise control of these parameters is a challenging task but of fundamental importance to the further development of the technique. In this study, we demonstrate for the first time a nanoparticle-hybrid suspensi...
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملRobust Fuzzy Content Based Regularization Technique in Super Resolution Imaging
Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...
متن کاملLocalized plasmonic structured illumination microscopy with an optically trapped microlens.
Localized plasmonic structured illumination microscopy (LPSIM) is a recently developed super resolution technique that demonstrates immense potential via arrays of localized plasmonic antennas. Microlens microscopy represents another distinct approach for improving resolution by introducing a spherical lens with a large refractive index to boost the effective numerical aperture of the imaging s...
متن کاملSub-pixel resolving optofluidic microscope for on-chip cell imaging
We report the implementation of a fully on-chip, lensless, sub-pixel resolving optofluidic microscope (SROFM). The device utilizes microfluidic flow to deliver specimens directly across a complementary metal oxide semiconductor (CMOS) sensor to generate a sequence of low-resolution (LR) projection images, where resolution is limited by the sensor’s pixel size. This image sequence is then proces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013